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Abstract

Optimization problems are prevalent in operations research and have many applica-
tions. Integer programs are an optimization problem designed to be combinatorial,
i.e., non-convex, so traditional solvers cannot solve them. Branch and Bound
(B&B) is an exact algorithm for solving an integer program called mixed integer
linear programs (MILP)s. Variable selection, node selection, and pruning rules
highly influence the performance of B&B. Configuring B&B to a time-realizable
algorithm requires expert knowledge and is problem-specific. We propose using Re-
inforcement Learning (RL) to augment an agent that learns branching and pruning
strategies in B&B with Graph Convolutional Neural Networks (GCNNs) trained
with an off-policy policy gradient. Our agent learns solely from experience and
is not taught by an expert. We aim to generalize the agent to be able to solve an
MILP, regardless of its formulation.

1 Introduction

Combinatorial optimization problems are a cornerstone of operations research and machine learning,
encompassing challenges such as the traveling salesman problem, scheduling and integer program-
ming. These problems, characterized by their exponential solution spaces, often require advanced
techniques to identify optimal solutions efficiently. Among these techniques, the branch-and-bound
(B&B) algorithm stands out as the most commonly used method for solving combinatorial opti-
mization problems. B&B iteratively partitions the search space by branching on decision variables,
solving more manageable subproblem (by solving LP relaxations where the integer variables are
allowed to take continuous values), and using upper and lower bounds to eliminate infeasible regions.
More specifically, the algorithm uses the subproblem’s LP solution as a lower bound and prunes or
fathoms branches that cannot improve the current best-known solution given by the global feasible
upper bound, effectively reducing the search space. B&B continues this process until all branches are
explored or pruned, ultimately converging on the optimal solution [9]. However, its effectiveness
heavily depends on the branching and pruning strategies employed, as poor decisions can lead to
significant computational overhead.

Traditionally, branching and pruning in B&B rely on heuristic or manually designed rules. While
these rules provide robust performance in general cases, they often fall short when applied to specific
problem instances or distributions, leading to suboptimal decisions. To address this limitation, re-
searchers have increasingly turned to machine learning techniques that can learn adaptive policies
tailored to the structure of the problem. Recent advancements in supervised learning and reinforce-
ment learning have demonstrated significant potential in optimizing these decisions, resulting in faster
convergence and reduced computational overhead.

This paper explores a reinforcement learning approach that employs a Graph Convolutional Neural
Network (GCNN)-based actor-critic architecture within an off-policy policy gradient framework.
The actor learns a branching policy for selecting variables, while the critic estimates the state
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value to guide the actor’s learning by providing feedback on the policy’s performance. The GCNN
processes a bipartite graph representation of the optimization problem, where the graph consists of
two types of nodes: variable nodes and constraint nodes. Using custom message-passing layers, the
GCNN captures the relationships between variables and constraints, encoding them into meaningful
embeddings. These embeddings enable the actor to make more informed and effective branching
decisions, improving the overall efficiency of the B&B process.

2 Related Work

The first attempt to incorporate machine learning techniques to aid the branch and bound (B&B)
paradigm was He u. a. [8], who learned a node selection and node pruning policy (not variable
selection as in our scenario) using imitation learning. He u. a. [8] assume that all problem instances
are solved a priori to which an oracle can guide the agent through branches of the B&B search tree
where the optimal solution is guaranteed to be found. The downside is obviously that we require that
a small set of solved problems are given at training time and the problems to be solved at test time are
of the same type. Essentially we repeatedly retrain the policy to make decisions that agree better with
the oracle’s decisions so it will only perform well on test data similar to training data. In addition
obtaining a large amount of high quality training data in this scenario is difficult and computationally
expensive.

Other works which build upon the idea of imitation learning but use a strong branching oracle include
Gasse u. a. [7]. Gasse u. a. [7] is one of the first papers to suggest modeling the state as a bipartitite
graph (constraints and variables are the two types of nodes) with an edge connecting them if the
variable is part of a given constraint and one of the first papers to parameterize the variable selection
policy as a Graph Convolutional Neural Network (GCNN) which we also do in our paper. The GCNN
learns how to encode the structure of the MILP (variables and constraints) into node representations
and then the policy applies a final masked softmax activation on the variable nodes to produce a
probability distribution over branching variables (ignoring variables that cannot be branched). The
downside is as with all imitation learning models, a requirement for labeled strong branching training
data which is not straightforward to obtain.

The alternative to imitation learning is reinforcement learning. More recent attempts to incorporate
reinforcement learning for variable selection include Parsonson u. a. [15] and Tang u. a. [21]. In
general, Reinforcement Learning (RL) algorithms for learning B&B cuts strugglge with sprase
rewards (good branching decisions often result in rewards only after many steps) and difficult
exploration (finding good branching strategies requires exploring a large, complex search space).
Parsonson u. a. [15] propose Retro-Branching, an RL framework to improve branching decisions
where the algorithm retrospectively decompose the search tree of B&B into multiple shorter paths
(sub-trees). Shorter trajectories enable the RL agent to learn from more predictable next states,
addressing the issues of sparse rewards and difficult exploration. Nevertheless, Retro-Branching
achieves only 80% of the performance of the best IL methods on benchmark MILPs. Despite
eliminating the need for expensive expert data, the method does not yet outperform imitation learning
in terms of solution quality or efficiency.

Tang u. a. [21] demonstrates the potential of reinforcement learning for improving cutting-plane
selection, a critical component of solving mixed-integer linear programs (MILPs). Their approach
leverages deep RL to adaptively select cutting planes, significantly outperforming traditional human-
designed heuristics and generalizing to larger instances and problem classes. Despite its success, the
method focuses specifically on cut selection and does not address the broader challenges of variable
selection or branching decisions within the B&B framework.

In our work, we propose an off-policy policy gradient (OFF-PG) approach that addresses these
challenges by utilizing off-policy learning to improve branching decisions. Unlike on-policy RL
methods, which suffer from sparse rewards and difficult exploration, OFF-PG leverages pre-collected
trajectories generated by a behavioral policy to stabilize training and improve sample efficiency.
By incorporating importance sampling, generalized advantage estimation (GAE), and actor-critic
networks, our method enables effective learning of branching strategies without requiring expensive
expert data or extensive trial-and-error. As a result, our approach achieves competitive or superior
solution quality compared to imitation learning methods while also offering greater scalability and
flexibility across diverse MILP instances.
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3 Background

3.1 Mixed Integer Linear Programs

A Mixed Integer Linear Program (MILP) is an extension of a Linear Program (LP) by incorporating
integer constraints only on some variables while others remain continuous. It retains the linear
objective function and constraints, allowing to address complex real-world challenges in fields like
logistics, scheduling, and resource allocation where both discrete and continuous optimization are
essential. The canonical form of an MILP can be written as

min
x

cTx

subject to Ax ≤ b (1)
l ≤ x ≤ u

x ∈ Zp × Rn−p

where c ∈ Rn is the objective coefficient, A ∈ Rm×n is the constraint matrix, b ∈ Rm is the
constraint vector, u, l ∈ Rn are upper and lower bounds on x, and p ≤ n is the number of integer
variables. A feasible solution to (1) is one that satisfies all constraints and an optimal solution
is feasible and is a minimizer of (1). A lower bound, z can be obtained by relaxing the integer
constraints and solving the corresponding LP.

3.2 The Branch and Bound Algorithm

Methods to solve MILPs include exact algorithms, heuristic methods, and a special case of exploiting
total unimodularity. Branch and Bound (B&B) [2] is an exact algorithm that systematically parti-
tions the optimization problem into smaller sub-problems, using a bounding function to eliminate
suboptimal branches and narrow the search space.

The root node in a B&B tree is the relaxed LP of (1) where all variables can be continuous. If a
solution to the LP relaxation respects the original integrality constraints, then it is a solution to (1);
otherwise, the search is extended. Candidate LPs are formed by the following binary decomposition,

xi ≤ ⌊x∗
i ⌋ ∩ xi ≥ ⌈x∗

i ⌉, ∀i ∈ [p] : x∗
i /∈ Z (2)

and the search continues. One can observe that two decisions must be made: (1) the choice of which
variable to append constraints on, xi - called the branching variable - and (2) which node to visit next
in the search. The remainder of this paper focuses on the branching problem.

4 Method

We now discuss our approach to solving the B&B variable selection problem in MILPs. We formulate
the problem as a Partially Observable Markov Decision Process (POMDP) and apply reinforcement
learning (RL).

States The agent at time t will be given local observations of the B&B tree, denoted by st. Each
node in the tree can be represented as a bipartite graph, as proposed by [7]. Concretely, the set
of m constraints - corresponding to the rows of A in (1) - can be formulated as a feature matrix
C ∈ Rm×dc . Similarly, the set of n variables - corresponding to the columns of A in (1) - can be
represented by V ∈ Rn×dv . An edge (i, j) ∈ E if and only if Ai,j ̸= 0. Edges are represented by
edge features E ∈ Rm×n×de . The agent reaches a terminal state if either of the following occurs: the
agent solves the MILP, the problem is infeasible, or the allotted solving time expires.

Actions The set of actions available at time t, denotedA(st), are represented by the k ≤ p fractional
variables to branch on, i.e. at ∈ A(st) ⊆ {1, . . . , k}, in the relaxed LP.

Rewards The reward, r(st, at, st+1) the agent will receive after observing st, branching on variable
at, and subsequently observing the next state st+1, will be the negative change in area over the dual
bound.
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Figure 1: Illustration of the dual bound z (orange) converging to the optimal solution cTx∗ over time,
t. The dual integral is the blue area shaded above the dual bound.

r(st, at, st+1) = −
∫ t+1

t

z∗τdτ (3)

The reward formulated in (3) is derived from the dual integral [16], where z∗τ is the best dual bound
found so far. The dual bound corresponds to a relaxed LP of the original MILP. By branching, the
LP relaxations corresponding to the branch-and-bound tree leaves get tightened, and the dual bound
increases over time [6] - refer to Figure 1. Using this reward motivates the agent to make good and
fast decisions, with the hope that the agent converges to tight optimality guarantees.

Transition Probabilities The probability of a trajectory τ = (s0, a0, r0, . . . , sT ) ∈ T depends on
the branching strategy π and the decisions made by the solver

p(τ |π) = p(s0)
T−1∏
t=0

p(st+1|st, at)π(at|st) (4)

Objective The objective is to maximize the sum of discounted rewards by learning an optimal
policy π∗, shown below

π∗ ∈ argmax
π

E
τ∼π

[∑
t

γtr(st, at, st+1)
]

(5)

A natural solution is to find an estimate of the optimal policy by learning a parametrization where any
form of gradient ascent can be performed. In reinforcement learning literature, these methods are
called policy-gradient methods.

4.1 Off-Policy Policy Gradient

Instead of using on-policy methods, we propose using an off-policy policy gradient method, denoted
OFF-PG. Off-policy methods have a wider range of applications and learning possibilities, notably
the ability to learn from demonstration [5, 20]. Off-policy is advantageous for complex problems
where learning from scratch is intractable due to the extended horizon of an episode and the potential
for sparse or uninformative reward signals [19].

Our method consists of a behavioural policy, bψ(a|s), an actor πθ(a|s) and a critic Vϕ(s) each of
which is parameterized by a GCNN. The behavioural policy attempts to mimic strong branching
using the method proposed in [7]. The actor and critic are loaded with pre-trained weights from the
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behavioural policy to accelerate learning. The actor and critic can learn all network parameters except
message-passing layers to lower memory consumption.

We utilize the generalized advantage estimate (GAE) [17] when training and multiply the actor loss
by a weighted importance sampling ratio πθ(a|s)/bψ(a|s) outlined in [5]. Furthermore, we follow
the same strategy outlined in the proximal policy optimization (PPO) algorithm [18], where we limit
the magnitude of the weighted sampling factor. We introduce soft updates to the critic using a target
critic network to minimize variance. The weights of the target network are updated according to a
Polyak step size of τ = 0.01, specifically

ϕ′ ← τϕ+ (1− τ)ϕ′

where ϕ′ are the target parameters and ϕ are the parameters of the actual critic. This approach is used
in other policy gradient methods like Deep Deterministic Policy Gradient (DDPG) [11].

Refer to algorithm 1 for a outline of OFF-PG.

Algorithm 1 Overview of OFF-PG training algorithm
1: procedure OFF-PG
2: Train the behavioral policy bψ using the method in [7]
3: Load the pre-trained weights to the actor and critic and freeze convolutional layers
4: for k = 0, 1, 2, . . . do
5: Collect a trajectory B = {τi} by running bψ
6: Compute the rewards to go R̂t
7: Compute advantages Ât using GAE and the current estimate of Vϕk

8: Update the policy by maximizing

θk+1 ∈ argmax
θ

1

T

T∑
t=0

min
(πθ(at|st)
bψ(at|st)

Ât, g(ϵ, Ât)
)

9: where g(ϵ, A) =

{
(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0
10: Update the value function Vϕ by minimizing

ϕk+1 ∈ argmin
ϕ

1

T

T∑
t=0

(
Vϕ(st)− R̂t

)2

11: end for
12: end procedure

5 Experiments

5.1 Description

Benchmarks Our first benchmark consists of Set Covering instances [1] with 500 columns and a
density of 0.05. We train on instances with 500 rows and evaluate all methods on 500 rows (easy),
600 rows (medium) and 700 rows (hard). Our second benchmark consists of instances related to the
Capacitated Facility Location problem [4] with 50 facilities. We train with 100 customers and test on
100 customers (easy), 150 customers (medium) and 200 customers (hard).

Baselines We compare against version 8.1 of PySCIPOpt [12], which uses a variant of hybrid
pseudo branching (HPB), and an imitation learning method proposed in [7] denoted as (GCNN). We
neglect to include a full strong brancher (FSB) as it is not competitive in terms of running time, despite
producing tiny search trees [7].

Training The behaviour policy is trained using the method outlined in [7], with 10,000 training
samples and 2,000 validation samples generated randomly using different seeds across an arbitrary
number of problem instances. This is to assert the reproducibility of the ablation study presented in
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Section 5.3. The environment used to interact with the behaviour policy is randomly generated and
distinct; this is to assert novel interactions with the agent.

The interactions obtained by the behaviour policy and the environment are stored in a replay buffer
of 1,000 transitions; if the buffer exceeds capacity, the oldest entry is dropped. We do not discount
the rewards, i.e. γ = 1, as this is an episodic task, and λ is set to 0.95 for GAE. The agent has a
maximum time limit of 15 minutes to solve each problem instance. We allow the agent to see a
maximum of 100 episodes and stop training if the actor or critic loss does not improve.

Evaluation Evaluation is conducted for each problem difficulty (Easy, Medium, Hard) on ten new
instances using three different seeds, resulting in 30 solving attempts per method. We report standard
metrics for MILP benchmarking [13], that is, the 1-shifted geometric mean of the solving times in
seconds (Time) and the final node counts of instances (Nodes). We also report the number of (Wins)
each baseline method achieves for each metric. Policy evaluation of Set Covering instances are
presented in Table 1 and Capacitated Facility Location instances in 2. Note that we also report the
standard error percentage, so "a± b% nodes" means it took on average a nodes to solve an instance,
and when solving one of those instances, the number of nodes varied from the sample mean by b%
on average. The best-performing metric is in bold.

Model Easy Medium Hard

Time Wins Nodes Time Wins Nodes Time Wins Nodes

HPB 3.78± 28.16% 6/30 381.10± 41.05% 4.32± 18.60% 7/30 339.97± 23.14% 6.43± 7.41% 17/30 727.83± 20.43%
GCNN 3.61± 33.38% 12/30 325.50± 33.86% 4.22± 19.99% 13/30 299.43± 20.02% 8.09± 5.06% 7/30 609.13± 18.28%
OFF-PG 3.71± 31.15% 12/30 344.80± 35.18% 4.39± 17.97% 10/30 309.13± 19.33% 7.78± 5.42% 6/30 601.47± 18.92%

Table 1: Performance comparison on Set Covering problem.

Model Easy Medium Hard

Time Wins Nodes Time Wins Nodes Time Wins Nodes

HPB 10.91± 3.06% 7/30 162.87± 20.47% 20.55± 1.19% 3/30 151.33± 17.29% 26.82± 0.82% 1/30 86.07± 16.53%
GCNN 9.23± 4.23% 8/30 234.27± 20.11% 15.09± 2.02% 14/30 248.33± 19.43% 15.69± 1.75% 17/30 135.70± 16.73%
OFF-PG 8.35± 4.99% 15/30 210.53± 20.31% 13.96± 2.11% 13/30 218.73± 16.17% 15.08± 1.80% 12/30 127.10± 15.47%

Table 2: Performance comparison on Capacitated Facility Location.

5.2 Comparative experiment

At solving time, we see that OFF-PG’s performance is subject to the problem instance, suggesting
the need for hyper-parameter adjustment based on the problem type. For example, it is superior in
expected solving time for Capacitated Facility Location across all seeds but underachieves in Set
Covering. We observe that expected solving time differentiates from the number of wins a model can
achieve. Interestingly, the best method for nodes, at least for the Capacitated Facility Location, is not
necessarily the best in total solving time. Solving time includes the computational cost of the feature
extraction and inference time.

OFF-PG shows the ability to generalize on Capacitated Facility Location problem instances but could
benefit from training on a more diverse set of problem types or difficulty levels. We observe that on
Set Covering problem instances, OFF-PG generalizes rather poorly, suggesting that the model’s ability
to generalize highly correlates with the type of MILP it is designed to solve.

5.3 Ablation study

We present an ablation study on our off-policy algorithm on the set covering problem by comparing
three different reward functions: the negated difference in the dual integral since the previous state,
the negated total number of nodes processed since the previous state, and the negative change in the
primal integral since the previous state.

Table 3 presents results on Set Covering instances. A precise observation is the consequence of
performance time and the choice of reward signal provided to the agent during learning. This
observation is not reflected in the loss curves shown in 2, where the actor receiving the primal reward
obtains the lowest loss, and the actor receiving the number of nodes reward fails to minimize the loss.
This highlights the complexity of training an off-policy agent.
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Reward Easy Medium Hard

Time Wins Nodes Time Wins Nodes Time Wins Nodes

Dual Integral 3.71± 31.15% 10/30 344.80± 35.18% 4.39± 17.97% 5/30 309.13± 19.33% 7.78± 5.42% 5/30 601.47± 18.92%
Primal Integral 3.53± 35.22% 10/30 319.47± 32.75% 4.13± 21.07% 8/30 292.67± 18.60% 7.88± 5.31% 7/30 608.93± 18.37%
Number of Nodes 3.55± 34.61% 10/30 331.80± 32.98% 4.24± 19.89% 17/30 338.13± 20.39% 7.14± 6.24% 18/30 594.93± 18.77%

Table 3: Performance comparison on different reward signals.

Figure 2: Actor losses for various reward signals. Purple: Number of nodes, orange: dual integral,
green: primal integral.

Our ablation study revealed that selecting the negative change in the dual integral does not improve
performance and, in some cases, results in degraded performance compared to other reward functions.
This may be attributed to the environment’s partial observability, where the number of nodes can
describe the search tree in greater detail than the dual bound. We hypothesize that combining these
three reward signals may improve solving time performance compared to other baselines.

6 Conclusion & Future Work

We have presented an approach to learning optimal variable selection for branching in B&B. Our
method leverages an existing policy to receive informative feedback and has the potential to discover
an improved policy. We have demonstrated on multiple datasets that our method outperforms SCIP’s
default solver but fails to do so when compared to current state-of-the-art behavioural cloning models.

We recommend continuing with our reinforcement learning model but suggest structuring the learning
process similarly to approaches outlined in [15] or designing a reward signal using inverse rein-
forcement learning [14]. This would ensure that the agent effectively navigates the search space
to outperform imitators. Furthermore, the architecture of our critic network could be enhanced by
incorporating more advanced learning methods, such as graph attention mechanisms [22, 3, 10], to
provide a more accurate representation of the value of the current state.
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