


considered the equivalent of source coding in digital communications, compressing the image into a
smaller dimension to capture salient features. The codebook in digital communications is designed
with expert knowledge and uses results from information theory, but in VQ-VAE, the codebook is
learnable. The codebook feature is unique to VQ-VAEs and is not found in ordinary VAEs, which
makes VQ-VAEs more suitable for the task of JSCC than their counterparts. The decoder (DEC)
resembles the operation of MLE or MAP decoding at the transmitter to recover the noisy message.

2.2 VQ-VAE: Contributions and Previous work

Data-driven solutions to JSCC have been proposed in (Bourtsoulatze, D. Burth Kurka, and D. Gündüz
2019) where the solution was to use a fully convolutional network, and it was later enhanced using a
feedback loop in (David Burth Kurka and Deniz Gündüz 2019). Approaches using VAEs were first
introduced by (Choi et al. 2019), where the VAE was to learn how to compress and error-correct
images given a fixed bit-length and computational budget. Later, (Saidutta, Abdi, and Fekri 2021)
utilized a mixture of VAEs posed as a learning task in a Mixture-of-Experts (MoE) setup.

While the methods above are state of the art, (Bourtsoulatze, D. Burth Kurka, and D. Gündüz 2019;
David Burth Kurka and Deniz Gündüz 2019) only considered using a discriminative model, where
the encoder and decoder were deterministic. Results in (Choi et al. 2019; Saidutta, Abdi, and Fekri
2021) introduce a generative model; however, the prior over the latents p(z) was not tractable and
required a score function estimator. Moreover, sampling their model required a complex form of
MCMC where the target distribution was dependent on pdata(x)qϕ(z | x). In practice, the distribution
over the data, pdata(x) is unknown.

To our knowledge, (Nemati and Park 2023) is the only case where VQ-VAEs are applied to the
problem of JSCC. We built on their work and changed the operation of finding the closest codeword by
incorporating an attention-based protocol; this lets the model learn which codewords are potentially
more beneficial and also allows for gradient computation in automatic differentiation, which is
"skipped" in VQ-VAEs. The attention protocol proposed in this paper is different from the architecture
in (Hoyos and Rivera 2024), as their work considers adding attention between layers of a hierarchical
VQ-VAE encoder and not the codebook, i.e. their codebook utilizes the original assignment discussed
in (Oord, Vinyals, and Kavukcuoglu 2018).

We also did a soft assignment of nearest codewords by keeping the method of calculating distances
between the messages and the encodings. However, we removed the argmin and replaced it with a
negated softmax. We believe this is a novel application to VQ-VAEs.

2.3 Transformer: Motivation

In JSCC, the objective is to design a coding scheme that efficiently integrates source coding (data
compression) and channel coding (error correction) into a single operation, optimizing both processes
simultaneously to improve transmission efficiency and robustness. This is a perfect use case for
transformers as their self-attention layers can capture complex dependencies and features within the
data, providing a rich, contextual understanding that enhances both compression (by recognizing
and eliminating redundant information) and error correction (by encoding the data in a way that
is inherently more robust to noise and interference in the communication channel). Specifically,
the encoder in a transformer automatically performs dimensionality reduction by converting the
embedding vector length Nemb to Q which is the number of coding bits per token and the error
correction is performed through the self-attention where the transformers can learn to emphasize
critical parts of the data while also spreading this information across the encoded output.

2.4 Transformer: Contributions and Previous work

To our knowledge, (S. Liu et al. 2023) is the only recent work in which transformers are applied to the
issue of JSCC. However in (S. Liu et al. 2023), the context vector is of fixed length where messages
are encoded through a pre-trained model BERT. We use the general form of the transformer as first
published in the seminal Attention is All you Need paper by Vaswani et al. 2023. In addition, the
loss function in (S. Liu et al. 2023) is a weighted-sum loss function with PPL, BLEU, and semantic
similarity. Here we consider just a cross-entropy loss function.
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3 Methodology

3.1 VQ-VAE: Soft Assignments

Let the uncompressed images be denoted as X ∈ RB×C×H×W , the shared codebook as C ∈ Rk×d,
the compressed images as ze ∈ Rn×d and the quantized messages as zq ∈ Rn×d. In the original paper,
(Oord, Vinyals, and Kavukcuoglu 2018), distances between codewords and compressed messages
were calculated as

D = ||ze − C||2 (1)
with the assumption that n = k. However, as the dimension of n becomes large, the assumption
of having a distinct codeword for every message is intractable. We impose a generalization to this
assumption by fixing k and allowing n to change depending on the compression dimension. The
distances between compressed messages and codewords are stored in a matrix D ∈ Rn×k where the
(i, j)th entry is the l2 distance between the ith compression and the jth codeword.

Another modification to the original work is to allow the gradient to flow through the codebook. We
do this by changing the hard assignment into a softmax:

q(z = k | X) = argmin
j

Dj ≈ q(z | X) = Softmaxj (−Dj) (2)

where Dj ∈ Rk is the jth row in the distance matrix and q(z|X) is the posterior. Imposing this
change on the posterior now removes the assumption that z | X ∼ Cat(Θ) and is instead learned
implicitly by the model. Replacing the argmin with a softmax allows the loss to take the form

L = log p(X | zq) + ||ze − zq||22 (3)

where zq = q(z | X)C since q(z | X) ∈ Rn×k.

3.2 VQ-VAE: Attention Based Assignment

Given that there is no correct metric for "closest" in relation to the latent space, we propose the idea
of using the attention mechanism (Vaswani et al. 2023) where we let the queries be the compressed
images ze, the keys and values be the codebook C. This choice of codeword assignment restricts the
model to a specific input size; we suggest future research be done to preserve spatial futures while
incorporating attention. The posterior now becomes

q(z | X) = Softmax
(
−zeC

T

√
k

)
C (4)

where the loss function is defined in equation 3.

3.3 VQ-VAE: Encoder and Decoder

The architecture of our encoder and decoder model uses repeated layers of (transposed) convolutions,
activations, batch norms and max pooling operations, where transposed convolutions are exclusive to
the decoder. The architecture is described with numerical values in section A.

3.4 VQ-VAE Meets JSCC

To model a digital communications system, we add AWGN to the VQ-VAE latent space; see figure
1. We add distortion once the encoder has compressed the images and soft or attentive codeword
assignments have been made. We train the model in two ways: (I). Train the model without distortion,
then add noise during testing; this motivation stems from adversarial attacks. (II). Train the model
with fixed distortion, then test on various noise levels. We keep the noise regime low and only
consider values of standard deviation between 1e−3 and 1. Experiments presented in section A
suggest that when the attentive VQ-VAE is trained on random noise levels between 1 and 5, the
distortion pattern remains the same as if the model was trained on low levels of noise. We do not
binarize the images, although this is a common approach where noise is modeled by a product of
Bernoullis (Choi et al. 2019).
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Figure 1: JSCC architecture using VQ-VAE, adapted from (Nemati and Park 2023). Input image X ,
encoded latents ze, codebook C, corrupted quantized latents ẑq = zq +N (0, σ2), and reconstructed
image X̂ . Attentive or soft assignments take place between the encoder and codebook.

3.5 Transformer: Architecture and JSCC

The transformer architecture is as follows. An input sentence sI is tokenized as

sI = {t1, t2, · · · tLI}

where ti ∈ V is the ith token in the vocabulary set V . We tokenize using a pre-trained BERT language
model. The tokens are then mapped to embeddings of dimension Nemb through an embedding
mapping femb : V → RNemb defined as

Wemb = femb({w1, · · · , wLI
}) ∈ RLE×Nemb (5)

Note Wemb is the embedding matrix where each row represents an embedding for a token and
LE ≥ LI refers to the embedding length of SI which is larger than just the number of tokens needed
to represent the sentence (as you need special tokens like start of sentence, end of sentence tokens,
etc. to be added to the embedding matrix). Wemb then goes through an encode layer composed of Nh

self-attention blocks. Mathematically, for the ith encoder layer the input embedding matrix W
(i)
emb is

used to calculate the key, query, and value matrices for the hth self-attention block as

Qi,h = W
(i)
embW

(i,h)
Q (6)

Ki,h = W
(i)
embW

(i,h)
K (7)

V i,h = W
(i)
embW

(i,h)
V (8)

where W
(i,h)
Q ,W

(i,h)
K ,W

(i,h)
V are the corresponding learned weight matrices. The attention is calcu-

lated using scaled dot-product as in Vaswani et al. 2023

Ai,h = Softmax
(
Qi,h(Ki,h)T√

Nattn

)
V i,h (9)

and we concatenate the outputs horizontally across the Nh heads to get the output as

Oi = [Ai,1 · · ·Ai,Nh
]W (i)

o (10)

where we have also projected back to the original model embedding dimension Nemb by using
projection matrix W

(i)
o . The output Oi is then fed into a feed-forward network composed of linear

layer, non-linearity, linear layer, non-linearity as is standard in Transformer models and this results in
our updated embedding matrix W

(i+1)
emb which serves as the input to the next encoder layer. This is

repeated Menc number of times representing the Menc layers of encoders. After that the extracted
semantic information matrix is dimensionally reduced as C = W

(Menc)
emb Wout ∈ RLE×Q where

Q is the number of coding bits per token. The next component in the architecture is a binarizer
that maps the entries in C by non-linear activation function tanh and quantize each entry with
hard threshold of 0 to {−1, 1} i.e. so it becomes a bitstream. Values greater than 0 are set to 1
and values less than 0 are set to −1, The bits then pass through the error-prone channel, in this
scenario we only consider the Binary Erasure Channel. In the BEC model, each bit or symbol has a
fixed probability Pe of being erased, i.e., turned into a symbol that represents a lost or undecidable
value, typically denoted as 0. The decoder takes as input the received bits through the channel
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Figure 2: (a) VQ-VAE soft assignments trained with no noise. (b) VQ-VAE attentive assignments
trained with no noise. Row 1: original images, row 2: reconstructed images from VQ-VAE, row 3:
reconstructed images from VQ-VAE with AWGN σ(a) = 0.01, σ(b) = 0.1, µ = 0.

Ĉ = hBEC(C) = [ĉ1, · · · ˆcLE
]T ∈ BLE×Q and passes through the same architecture as encoder

(position encoder + attention + feedforward layers) except this time we also have cross-attention with
the encoder output as well. Finally, the output WMdec

dec is sent through a linear layer which maps the
decoder output to the vocabulary space so we can predict the likelihood of each token being the next
token in the sequence after taking the softmax and argmax.

4 Results

4.1 VQ-VAE

Experiments were conducted on the CelebA dataset (Z. Liu et al. 2015). We first discuss the
application of distorting the quantized latents when the model is trained without any form of noise.
This method could be seen as a form of an adversarial attack on the system.

Soft-assignment: Refer to figure 2(a); we notice that the system can reconstruct the image using
soft assignments; however, the addition of N (0, 0.012) to the quantized vectors prevents the decoder
from recovering the image. Attentive-assignment: Refer to figure 2(b); observe that the attentive
quantization is more resilient to distortion compared to the soft assignment model. We suggest this is
a result of scaling the loss L(ze, zq) by a factor of β < 1. Without the scaling factor of β in equation
3, the reconstructed images produced by the decoder are abnormally blurry (Higgins et al. 2017).

Motivated by the consequence of adding noise to a system solely trained for compression and
reconstruction, we now train the model with a fixed level of noise N (0, 0.052) and subsequently test
the model on a range of variances.

Soft-assignment: Refer to figure 4; we notice that the decoder possessed a limit on the value of
noise added to the quantized encodings. The model can recover the image with variances in the
neighbourhood of what the model was trained on but suffers when the standard deviation increases
past +0.05/0.1. Attentive-assignment: Much like the behaviour of the soft assignments, the attentive
assignment does have a limit on the noise level to reconstruct the image. However, this limit is much
less constrained than the soft assignment. We also see that the quality of the image reconstructed by
the attentive assignment is much better. Refer to figure 4 for a comparison of reconstruction error
between the two models and a more general comparison in section A.

4.2 Transformer

Our input dataset is the Multi30k dataset from Hugging Face which is a collection of around 30,000
short sentences in English/German, the German part was removed in the data processing part.
Tokenizer is BERT transformer which has vocabulary size of |V| = 28996. The encoder parameters
are Nhead = 6,Menc = 2, Nemb = 768, dropout = 0.1. The decoder parameters are the same as
the encoder. We trained using a cross-entropy loss function with Adam optimizer with learning rate
α = 1e− 3 for 5 epochs and found our training error was near 0 by the end. Validation error was also
very good for our model (near zero). The primary evaluation criteria is semantic similarity which is
measured using cosine similarity, defined as the cosine of the angle between two non-zero tensors
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x1, x2 in multi-dimensional space (i.e. the dot product).

Similarity =
x1 · x2

max(||x1||2, ϵ) ·max(||x2||2, ϵ)
(11)

A cosine similarity close to 1 implies the output and input have very similar embeddings (i.e. the
model is resistant to the binary erasure channel and successfully reconstructs the original message),
while a value close to 0 implies dissimilarity. See 3 for a plot of the erasure probability Pe vs semantic
similarity. Our proposed scheme as seen in 3a maintains a semantic similarity of 0.99 across the
board, outperforming the proposed scheme by S. Liu et al. 2023 and standard Huffman + LTE Turbo
or Huffman + LDPC source and channel coding techniques as seen in 3b.

(a) Semantic similarity performance for our pro-
posed scheme

(b) Semantic similarity performance for scheme by
S. Liu et al. 2023

Figure 3: Comparison of proposed transformer models for JSCC

5 Discussion and Future Work

In our work, we presented two novel protocols to enhance the performance of the VQ-VAE model,
namely, using the softmax function and the attention mechanism. Removing the non-differentiable
argmin function allows the gradient to propagate through the model without skipping gradients past
the codebook. We discussed the difference in performance between soft and attentive assignment
VQ-VAEs by adding noise to the latents to mimic the setting of a communication system. Attentive
VQ-VAE is more resilient to perturbations when the model is trained with or without noise than soft
VQ-VAE.

Although the results are promising for attentive VQ-VAE, further research should be conducted
to examine the reasoning behind its performance. Topics include considering multi-head attention
instead of single-head attention, ways to make the model more robust to a variety of noise levels
regardless of the level of noise it was trained on, and examining the constraints required for practical
implementation as discussed in the section 1. We also suggest implementing a binarized version of
the attentive VQ-VAE and testing it on more sophisticated channels; some discussion of this topic is
mentioned in (Hoyos and Rivera 2024) where a VQ-VAE is trained to restore images with missing
pixels.

As for the transformer, we proposed a Transformer-based JSCC scheme for textual semantic transmis-
sion tasks, which showed performance superiority against the proposed scheme by S. Liu et al. 2023
as well as conventional separate source/coding schemes. Further research may involve investigating
the model’s ability to handle different channel conditions such as binary symmetric channel or
deletion channel as well as investigating other metrics of performance such as Perplexity (PPL) or
Bilingual Eventual understudy (BLEU). We also used the most basic transformer architecture, further
research can be done with more advanced transformer architectures.

Code to reproduce results in the paper can be located at
https://gitfront.io/r/fmdowey/SwcPPL47Y4c7/JSCC/.
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A Supplementary material

Table 1: VQ-VAE Encoder Architecture
Layer Description

Conv2d Cout = 32, S = 1, K = 3, P = 1
BatchNorm2d
ReLU
MaxPool2d S = 2, K = 2, P = 0
Conv2d Cout = 64, S = 1, K = 3, P = 1
BatchNorm2d
ReLU
MaxPool2d S = 2, K = 2, P = 0
Conv2d Cout = 128, S = 1, K = 3, P = 1
BatchNorm2d
ReLU
MaxPool2d S = 2, K = 2, P = 0
Conv2d Cout = 256, S = 1, K = 3, P = 1
BatchNorm2d
ReLU
MaxPool2d S = 2, K = 2, P = 0
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Figure 4: Reconstructed images from the attentive assignments (top left row) and soft assignment
(bottom left row) VQ-VAE over various value of noise. Here "Noise" means standard deviation, σ.
We train both models with penalty constant β for fair comparison. (Right) Reconstruction error over
values of noise. Soft assignment VQ-VAE (orange) and attentive assignment VQ-VAE (blue). Both
trained with σ = 0.05.

Table 2: VQ-VAE Decoder Architecture
Layer Description

ConvTranspose2d Cout = 128, S = 2, K = 2, P = 0
BatchNorm2d
ReLU
Conv2d Cout = 128, S = 1, K = 3, P = 1
BatchNorm2d
ReLU
ConvTranspose2d Cout = 64, S = 2, K = 2, P = 0
BatchNorm2d
ReLU
Conv2d Cout = 64, S = 1, K = 3, P = 1
BatchNorm2d
ReLU
ConvTranspose2d Cout = 32, S = 2, K = 2, P = 0
BatchNorm2d
ReLU
Conv2d Cout = 32, S = 1, K = 3, P = 1
BatchNorm2d
ReLU
ConvTranspose2d Cout = 3, S = 2, K = 2, P = 0
Sigmoid

Table 3: VQ-VAE General Parameters
Parameter Value

Learning rate α 1e−3

Optimizer adam
Noise standard deviation training σtrain 0.05
Penalty (fixed) β 1e−3

Number of encodings k 512
Encoding dimension d 64
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Figure 5: Attentive VQ-VAE (top row) and (bottom row) Soft VQ-VAE trained on random levels of
noise (integers) generated uniformly between σ = 1 and σ = 5.

9




