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Abstract—This project report delves into the innovative appli-
cation of Reinforcement Learning (RL) techniques for decoding
error-correcting codes, with a focus on binary linear codes and a
bit-flipping (BF) decoding strategy. Utilizing the SARSA and Q-
learning algorithms within a Markov Decision Process (MDP)
framework, the study extends the conventional approach to
decoding by iteratively making BF decisions based on individual
bits, thereby transforming the decoding process into a series of
RL problems. The exploration includes a comprehensive back-
ground on channel coding, detailing the transition of received
signals over an additive white Gaussian noise channel to a binary
symmetric channel, and explicates the BF decoding algorithm as
well as the foundational elements of Markov Decision Processes.
A paramount challenge addressed in this work is the prohibitive
memory complexity associated with tabular RL algorithms. To
mitigate this, a solution involving the integration of a low-
complexity, parameterized approximator for the Q-function is
discussed, utilizing a Neural Network (NN). This approach not
only offers a scalable alternative to tabular methods but also
leverages the advantages of machine learning to enhance decod-
ing performance. Empirical results from simulations illustrate
the efficacy of the tabular SARSA decoder, which surpasses both
traditional and BF decoders in terms of Bit Error Rate (BER),
with higher computational efficiency. While the parameterized
SARSA decoder does not outperform its tabular counterpart,
it nonetheless presents a viable option for decoding large codes,
where tabular methods are impractical. The comparison between
SARSA and Q-learning highlights the situational advantages of
each, suggesting avenues for future research to optimize decoder
performance across different channel models and coding schemes.
This investigation underscores the potential of RL techniques in
the realm of error correction coding, particularly in optimizing
decoding strategies for binary linear codes.

I. INTRODUCTION

The process of decoding error-correcting codes can be con-
ceptualized as a classification problem and addressed through
the application of supervised machine learning techniques.
Fundamentally, this approach entails considering the decoder
as a parameterized function (e.g., a neural network), and
employing data-driven optimization methods to ascertain op-
timal parameter configurations [1]–[7]. In the absence of
additional constraints on the code, this method demonstrates
efficacy primarily for short codes, and becomes ineffective
for unstructured codes comprising more than a few hundred
codewords. In the context of linear codes, the complexity of
the problem is substantially reduced, as it necessitates learning
only a singular decision region rather than individual regions

for each codeword. The code linearity can be exploited via
message-passing techniques [4] or by using syndromes [1], [7].
Nevertheless, the decoding challenge persists, as good codes
often exhibit complicated decision regions, a consequence of
the extensive number of neighboring codewords. Despite these
challenges, near-optimal performance of decoders, trained
through learning methodologies in practical settings, has been
evidenced in various types of codes. Moreover, machine
learning-based decoders may overcome the computational
complex implementation of conventional decoders.

In this project we aim to study and reproduce the results of
[8], which proposed a reinforcement learning (RL) approach
for the aforementioned problem. The focus is on the decoding
of binary linear codes from a machine-learning perspective.
Yet, rather then learning the direct mapping from observations
(corrupted codewords) to estimated codewords in a supervised
fashion, the decoding is performed in an iterative way based on
individual bit-flipping (BF) decisions. This approach facilitates
the formulation of the problem within the framework of a
Markov Decision Process (MDP), enabling the application of
RL techniques to find effective decision-making strategies. The
approach used is a syndrome-based approach where the state
space of the MDP includes all possible binary syndromes.

II. BACKGROUND

A. Channel Coding

Let C be a (n, k) binary linear code defined by a parity-
check (PC) matrix H ∈ Fm×n

2 , where n is the code length,
k is the code dimension, and m ≥ n − k. The code is
used to encode messages x ∈ Fk

2 into codewords c =
(c1, c2, ..., cn)

T ∈ Fn
2 , which are then transmitted over the

additive white Gaussian noise (AWGN) channel according to:

yi = (−1)ci + wi ∀i ∈ [n] (1)

where yi is the i-th element in the received vector (corrupted
codeword) y = (y1, y2, ..., yn)

T , wi ∼ N
(
0, (2REb/N0)

−1
)
,

the code rate is R = k/n, and Eb/N0 denotes the signal-
to-noise-ratio (SNR). The received vector is then mapped
by a hard-decision rule to obtain z = (z1, z2, ..., zn)

T .
I.e., zi is obtained by mapping the sign of yi according to
+1 → 0, −1 → 1. A decoding that is based on the hard-
decisions z is equivalent to the transmission over the binary
symmetric channel (BSC) [9], where every bit is flipped with



probability p. The crossover probability p of a BSCp in that
case is proportional to the AWGN variance, since larger noise
variance correspond to a larger bit flipping probability.

BF decoding is an iterative decoding algorithm, that has
been studied extensively in literature, which involves a
decision-making process. The fundamental concept underlying
BF decoding involves the development of an appropriate
metric that enables the decoder to systematically evaluate
and rank the bits in terms of their reliability, taking into
consideration the constraints imposed by the code. In its most
basic version, BF employs the hard-decision output, denoted
as z and proceeds iteratively to identify the bit which, upon
being flipped, would result in the maximum reduction of the
currently violated PC equations. BF is a syndrome decoding-
based algorithm which takes advantage of the property of the
parity check matrix that for every codeword c ∈ C : Hc = 0
[9], and we denote s = Hz ∈ Fm

2 as the observed syndrome.
Pseudocode for a generic BF decoding is provided in Alg. 1,
where ej ∈ Fn

2 is a basis vector whose j-th element is 1 and
the rest are 0.

Algorithm 1 Bit-Flipping Decoding
Input: hard decision z, parity-check matrix H
Output: estimated codeword ĉ

1: ĉ← z
2: while Hĉ ̸= 0 and max. iterations not exceeded do
3: V ←

∑m
i=1 si where s = Hĉ

4: for j = 1, 2, ..., n do
5: Qj ← V −

∑m
i=1 si, where s = H (ĉ+ ej)

6: end for
7: update ĉ← ĉ+ ej , where j = argmaxj∈[n] Qj

8: end while

B. Markov Decision Processes

A time-invariant MDP is characterized by a Markovian ran-
dom process S0, S1, ... in which the probability of transitioning
between states P (s′|s, a) ≜ P (St+1 = s′|St = s,At = a) is
influenced only by the action At taken by an agent currently
being in state St at time step t. Here, s, s′ ∈ S, a ∈ A where
S,A are finite sets containing all possible states and actions.
Moreover, the agent receives a reward Rt = R(St, At, St+1)
which depends only on the previous state, updated state,
and action taken for this transition. The agent’s decision
making process is described by a policy π : S → A, which
maps states into actions in either a probabilistic fashion or
deterministic one. The goal is to find the optimal policy π∗

that returns the best action for each possible state in terms
of the total expected discounted reward E[

∑∞
t=0 γ

tRt], where
0 < γ < 1. Should the probabilities associated with transitions
and rewards are known, dynamic programming techniques are
applicable for the derivation of optimal policies. Conversely, in
scenarios where such probabilities remain undefined, optimal
policies can yet be identified via repeated interactions with the
environment, on the condition that the states and rewards are
observable. This approach is referred to as RL.

Two of the simplest forms of RL are known as Q-
learning [10] and state-action-reward-state-action (SARSA)
[11], wherein the optimal policy is defined through the Q-
function Q : S ×A → R according to

π∗(s) = argmax
a∈A

Q∗(s, a), (2)

where the optimal Q-function Q∗(s, a) is defined by the
Bellman Optimality equation as

Q∗(s, a) = R(s, a, s′) + γ
∑
s′

P (s′|s, a)max
a′∈A

Q∗(s′, a′) (3)

and the Q-function can be recursively expressed by the Bell-
man equation as

Qπ(s, a) = R(s, a, s′) + γ
∑
s′

P (s′|s, a) E
a′∼π(·|s′)

Qπ(s
′, a′)

(4)
Both Q-learning and SARSA are a part of a family of RL
algorithms called TD methods. The goal is to iteratively learn
the optimal Q-function Q∗(s, a) which is based on the optimal
policiy π∗. In Q-learning this is done by

Q(s, a)← Q(s, a)+α
[
R(s, a, s′) + γmax

a′
Q(s′, a′)−Q(s, a)

]
(5)

SARSA is closely related by updating the Q function

Q(s, a)← Q(s, a) + α [R(s, a, s′) + γQ(s′, a′)−Q(s, a)]
(6)

Remark: SARSA is closely related to the Bellman equation and
Q-learning is based off of the Bellman optimality equation.

Pseudocode for Q-learning and SARSA are given in Alg. 2
and Alg. 3, where a popular choice for updating the policy is:

π(a|s) =

{
unif. random overA w.p. ϵ
argmaxa Q(s, a) w.p. 1− ϵ

(7)

which is known as ϵ-greedy exploration.

Algorithm 2 Q-learning
Input:learning rate α, discount factor γ
Output: estimated Q function

1: initialize Q(s, a)← 0 for all s ∈ S, a ∈ A
2: for i=1,2,..., max iters do
3: initialize starting state s
4: while s is not terminal do
5: choose action a ▷ using ϵ-greedy (7)
6: execute a, observe next state s′ and reward r
7: Q(s, a)← (1− α)Q(s, a) +
8: + α(r + γmaxa′∈A Q(s′, a′))
9: s← s′

10: end while
11: end for



Algorithm 3 SARSA
Input:learning rate α, discount factor γ
Output: estimated Q function

1: initialize Q(s, a)← 0 for all s ∈ S, a ∈ A
2: for i=1,2,..., max iters do
3: initialize starting state s
4: choose action a ▷ using ϵ-greedy (7)
5: while s is not terminal do
6: execute a, observe next state s′ and reward r
7: choose action a′ ▷ using ϵ-greedy (7)
8: Q(s, a)← (1− α)Q(s, a) + α (r + γQ(s′, a′))
9: s← s′

10: a← a′

11: end while
12: end for

III. MARKOV DECISION PROCESS MODELING

In this section we present the mapping of bit-flipping
decoding into a an MDP so that Q-learning or SARSA could
be conducted [8].

1) Choosing Action and State Spaces: We will define
the action At as the flipping of a single bit in the
received corrupted codeword at time t. The codeword
block length is n, therefore, there are n possible bits
to flip and the action space can be represented as
A = {1, 2, ..., n} = [n]. Since bit-flipping decoding is a
syndrome-based algorithm, the state space S would be
formed by all possible binary syndromes of length m.
Assuming the initial state S0 is the syndrome Hz, the
next state can be derived by simply adding the At-th
column of H to the current state St+1 = H(z + eAt

).
The all-zero syndrome corresponds to the terminal state,
i.e., a valid codeword has been decoded. This construc-
tion make the MDP deterministic, where the transition
probabilities P (s′|s, a) take the values in 0, 1. A limi-
tation on the number of bit-flips per codeword is also
enforced such that at most T bit-flips could performed
before the current iteration is ended and a new received
codeword will be decoded.

2) Choosing the Reward Strategy: A straightforward reward
function for the decoding purpose is when a return value
of 1 is assigned for accurately decoded codewords, and 0
for inaccuracies. This criterion suggests that an optimal
policy minimizes the codeword error rate. Nonetheless,
it is mandated that the reward function’s dependencies
are confined to the current state, next state and the ex-
ecuted action. Based on the maximum-likelihood (ML)
decoding optimization problem for a binary linear code
over general discrete memoryless channels discussed in
[8], the following reward function was established for
the BSC:

R(s, a, s′) =

{
− 1

T + 1 if s′ = 0 (terminal state)
− 1

T otherwise.
(8)

This reward function enables us to view optimal BF
decoding as a ”maze-playing game” within the syndrome
domain, with the objective of discovering the shortest
path to reach the all-zero syndrome. The incorporation of
a small negative penalty for each move is a conventional
method aimed at promoting the discovery of shorter
paths.

3) Choosing the Exploration Strategy: As previously stated,
we will use the ϵ-greedy exploration from Eq. (7).

IV. PARAMETERIZED Q-FUNCTION APPROXIMATORS

Standard SARSA and Q-learning require the storing of all
Q-function real values for each state and action (refer to step
1. in Algo. 3 and 2). Accordingly, a table of size |S| × |A|
must be stored in memory, which would become infeasible for
code with large block length. For example, standard tabular Q-
learning would be feasible for binary RM(r = 32,m = 16)
code which has |S| = n − k = 2m −

∑r
j=0

(
m
j

)
= 216 and

|A| = 32, the table has |S||A| ≈ 2 · 1016 entries.
To overcome this issue, a fitted Q-learning algorithm is

introduced in [8] where the idea is to learn a low complexity
approximation of Q(s, a) which would be represented as a
parameterized function Qθ(s, a) where θ are the learnable
parameters. In this approach, we would alternate between sim-
ulating the MDP and updating/training the current parameters
to obtain the estimate of the Q-function. In particular for
SARSA, given a tuple (s, a, r, s′, a′) we would update the
parameters θ based on minimizing the loss

L(θ) = r + γQθ(s
′, a′)−Qθ(s, a). (9)

using gradient descent. Pseudocode for fitted SARSA is pro-
vided in Alg. 4.

Algorithm 4 Fitted SARSA
Input:learning rate α, discount factor γ
Output: estimated Q function

1: initialize parameters θ
2: for i=1,2,..., max iters do
3: initialize starting state s
4: choose action a ▷ using ϵ-greedy (7)
5: while s is not terminal do
6: execute a, observe next state s′ and reward r
7: choose action a′ ▷ using ϵ-greedy (7)
8: θ ← θ − α∇θL(θ)
9: s← s′

10: a← a′

11: end while
12: end for

A common choice of Qθ(s, a) is as a neural network
(NN) where θ represents the weights. Note that the loss
function is based on how we update the Q-function in Alg.
3, where the minimization will approximate Qθ(s, a). We use
a fully connected NN with one hidden layer to represent
Qθ(s, a). The NN fθ maps a syndrome s into a length-n
vectors fθ(s, a) ∈ Rn, which represent the Q-function value



approximation at state s for every possible action Q̂(s, a)
where a ∈ A. The exact value would be chosen according
to the randomly generated action a. fθ structure was chosen
as (n−k)×k×n which has a decoder architecture. Moreover,
ReLU was used as the activation function of the hidden layer
and the last layer is linear.

V. SIMULATION RESULTS

In this section, numerical results are presented for learned
BF decoder alongside the conventional decoders which were
used as benchmarks. We considered the following binary
codes:

• RM(r = 3,m = 6)
• BCH(n = 63, d = 45)

The code that was used in the project is available at https:
//github.com/FlynnDowey/RL decoding/tree/main.

A. Experimental Setup

We set the maximum number of decoding iterations to
T = 10, which correspond to allowing a maximum of 10
bit flips. The number of episodes used in the tabular setting
was 9 × 105. Furthermore, the discount factor was set to
γ = 0.95 and epsilon greedy was initialized at ϵ = 0.9 where
ϵ followed an exponential decay during learning. Tabular
SARSA and Q-learning were trained with a learning rate
between α ∈ [0.01, 1], however performance was consistent
amongst all values. The learning rate in parameterized SARSA
was set to α = 0.1, and followed an exponential decay.
Weights were updated according to stochastic gradient descent
(SGD). The parameterized setting used the same ϵ-greedy
values as the tabular case. For each episode, the environment
would randomly select a message to encoder and subsequently
transmit over the channel. This is a more general approach, as
[8] only considered a constant message throughout inference
and training. The agents were trained on a constant SNR value
of 4dB and inference was conducted with a range of SNR
values between 1dB to 7dB.

B. Performance Evaluation

In Fig. 1 and 2 the decoding performance of RM(3, 6)
and BCH(63, 45) code is presented. The figures illustrate the
bit error rate (BER) performance metric over different values
of SNR for four different decoders: traditional decoder, BF
decoder, tabular SARSA decoder, and parameterized SARSA
decoder. For BCH code, the traditional decoder followed
the Berlekamp-Massey decoding algorithm, while RM code
was decoded using Reed’s majority-logic algorithm. Tabular
SARSA outperform both the traditional decoder and the BF
decoder. Moreover, it does it in a more efficient way, which is
crucial for real time applications. Although the parameterized
SARSA does not perform as well as the tabular version, it
showcases the ability to generalize on codes with long block
length, where the tabular version would become computa-
tionally infeasible. Furthermore, it outperform the traditional
decoder, and the BF decoder in most of the SNR values, and
more importantly, in the low SNR regime.

Fig. 1. Simulation results for learned BF decoding for RM(6, 3) code. BER
over several SNR values.

Fig. 2. Simulation results for learned BF decoding for BCH(63, 45) code.
BER over several SNR values.

Next, we present a performance comparison between
SARSA and Q-learning. Fig 3 and 4 depict the BER per-
formance of tabular SARSA, tabular Q-learning, traditional
decoding, and BF decoding for the two codes we considered.
We can see that tabular SARSA outperforms tabular Q-
learning for both codes under the BSC for the presented
MDP formulation setting. If Q-learning was trained on more
episodes, then its performance would asymptotically converge
with SARSA. The performance difference between Q-learning
and SARSA is clearly explained in [11].

Remark: we explored the performance of Q-learning on
channels that are not BSC, where the environment uses other
types of reward functions. We noticed that it can outperform
SARSA in various settings. We suggest that the understanding
of when Q-learning can outperform SARSA, or under which
setting to use either algorithm would be left for future research.



Fig. 3. Comparison results between learned BF decoding based on SARSA
or Q-learning for RM(6, 3) code. BER over several SNR values.

Fig. 4. Comparison results between learned BF decoding based on SARSA
or Q-learning for BCH(63, 45) code. BER over several SNR values.

VI. CONCLUSION

In this report, an exploration of a RL decoder, based on
bit-flipping decoding, utilizing both SARSA and Q-learning
methodologies, was undertaken. The foundational concepts
of coding theory alongside RL were presented, followed by
the formulation of the RL-centric approach. Addressing the
challenge posed by the memory complexity inherent in tabular
RL algorithms, we discussed a solution that involves the
incorporation of a parameterized, low-complexity approxima-
tor for the Q-function values. This approximator is realized
through the implementation of a fully-connected NN. Prelim-
inary results demonstrated that the tabular SARSA algorithm
surpassed both conventional and BF decoders in terms of
BER, and is computational efficient. Moreover, while the
parameterized SARSA variant exhibited inferior performance
compared to its tabular analog, it still achieved commendable

results, underscoring the feasibility of applying RL techniques
to large codes. Lastly, a comparison between SARSA and
Q-learning has been introduced. Future research directions
include extending this RL approach to non-binary codes, var-
ious channel models, and further refining the balance between
computational efficiency and decoding accuracy, broadening
the applicability of machine learning methodologies in com-
munication systems.
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